Printed from https://www.webqc.org

Molar Mass, Molecular Weight and Elemental Composition Calculator

Molar mass of Lr4HN2H100O3Fe2P4K3B1C8F3Li1Ti4BI1Be3V2Cr3Zr3Rn3NB6Ta9Rh5Mo5 is 5972.4311 g/mol

Convert between Lr4HN2H100O3Fe2P4K3B1C8F3Li1Ti4BI1Be3V2Cr3Zr3Rn3NB6Ta9Rh5Mo5 weight and moles
CompoundMolesWeight, g
Lr4HN2H100O3Fe2P4K3B1C8F3Li1Ti4BI1Be3V2Cr3Zr3Rn3NB6Ta9Rh5Mo5

Elemental composition of Lr4HN2H100O3Fe2P4K3B1C8F3Li1Ti4BI1Be3V2Cr3Zr3Rn3NB6Ta9Rh5Mo5
ElementSymbolAtomic weightAtomsMass percent
LawrenciumLr262.1096417.5546
HydrogenH1.007941011.7045
NitrogenN14.006730.7036
OxygenO15.999430.8037
IronFe55.84521.8701
PhosphorusP30.97376242.0744
PotassiumK39.098331.9639
BoronB10.81181.4481
CarbonC12.010781.6088
FluorineF18.998403230.9543
LithiumLi6.94110.1162
TitaniumTi47.86743.2059
IodineI126.9044712.1248
BerylliumBe9.01218230.4527
VanadiumV50.941521.7059
ChromiumCr51.996132.6118
ZirconiumZr91.22434.5823
RadonRn210.990601310.5982
TantalumTa180.94788927.2675
RhodiumRh102.9055058.6150
MolybdenumMo95.9658.0336

Computing molar mass step by step

First, compute the number of each atom in Lr4HN2H100O3Fe2P4K3B1C8F3Li1Ti4BI1Be3V2Cr3Zr3Rn3NB6Ta9Rh5Mo5:
Lr: 4, H: 101, N: 3, O: 3, Fe: 2, P: 4, K: 3, B: 8, C: 8, F: 3, Li: 1, Ti: 4, I: 1, Be: 3, V: 2, Cr: 3, Zr: 3, Rn: 3, Ta: 9, Rh: 5, Mo: 5

Then, lookup atomic weights for each element in periodic table:
Lr: 262.10963, H: 1.00794, N: 14.0067, O: 15.9994, Fe: 55.845, P: 30.973762, K: 39.0983, B: 10.811, C: 12.0107, F: 18.9984032, Li: 6.941, Ti: 47.867, I: 126.90447, Be: 9.012182, V: 50.9415, Cr: 51.9961, Zr: 91.224, Rn: 210.990601, Ta: 180.94788, Rh: 102.9055, Mo: 95.96

Now, compute the sum of products of number of atoms to the atomic weight:
Molar mass (Lr4HN2H100O3Fe2P4K3B1C8F3Li1Ti4BI1Be3V2Cr3Zr3Rn3NB6Ta9Rh5Mo5) = ∑ Counti * Weighti =
Count(Lr) * Weight(Lr) + Count(H) * Weight(H) + Count(N) * Weight(N) + Count(O) * Weight(O) + Count(Fe) * Weight(Fe) + Count(P) * Weight(P) + Count(K) * Weight(K) + Count(B) * Weight(B) + Count(C) * Weight(C) + Count(F) * Weight(F) + Count(Li) * Weight(Li) + Count(Ti) * Weight(Ti) + Count(I) * Weight(I) + Count(Be) * Weight(Be) + Count(V) * Weight(V) + Count(Cr) * Weight(Cr) + Count(Zr) * Weight(Zr) + Count(Rn) * Weight(Rn) + Count(Ta) * Weight(Ta) + Count(Rh) * Weight(Rh) + Count(Mo) * Weight(Mo) =
4 * 262.10963 + 101 * 1.00794 + 3 * 14.0067 + 3 * 15.9994 + 2 * 55.845 + 4 * 30.973762 + 3 * 39.0983 + 8 * 10.811 + 8 * 12.0107 + 3 * 18.9984032 + 1 * 6.941 + 4 * 47.867 + 1 * 126.90447 + 3 * 9.012182 + 2 * 50.9415 + 3 * 51.9961 + 3 * 91.224 + 3 * 210.990601 + 9 * 180.94788 + 5 * 102.9055 + 5 * 95.96 =
5972.4311 g/mol


Mass percent compositionAtomic percent composition

Formula in Hill system is C8H101B8Be3Cr3F3Fe2IK3LiLr4Mo5N3O3P4Rh5Rn3Ta9Ti4V2Zr3

Computing molar mass (molar weight)

To calculate molar mass of a chemical compound enter its formula and click 'Compute'. In chemical formula you may use:
  • Any chemical element. Capitalize the first letter in chemical symbol and use lower case for the remaining letters: Ca, Fe, Mg, Mn, S, O, H, C, N, Na, K, Cl, Al.
  • Functional groups: D, T, Ph, Me, Et, Bu, AcAc, For, Tos, Bz, TMS, tBu, Bzl, Bn, Dmg
  • parenthesis () or brackets [].
  • Common compound names.
Examples of molar mass computations: NaCl, Ca(OH)2, K4[Fe(CN)6], CuSO4*5H2O, nitric acid, potassium permanganate, ethanol, fructose, caffeine, water.

Molar mass calculator also displays common compound name, Hill formula, elemental composition, mass percent composition, atomic percent compositions and allows to convert from weight to number of moles and vice versa.

Computing molecular weight (molecular mass)

To calculate molecular weight of a chemical compound enter it's formula, specify its isotope mass number after each element in square brackets.
Examples of molecular weight computations: C[14]O[16]2, S[34]O[16]2.

Definitions

  • Molecular mass (molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
  • Mole is a standard scientific unit for measuring large quantities of very small entities such as atoms and molecules. One mole contains exactly 6.022 ×1023 particles (Avogadro's number)

Steps to calculate molar mass

  1. Identify the compound: write down the chemical formula of the compound. For example, water is H2O, meaning it contains two hydrogen atoms and one oxygen atom.
  2. Find atomic masses: look up the atomic masses of each element present in the compound. The atomic mass is usually found on the periodic table and is given in atomic mass units (amu).
  3. Calculate molar mass of each element: multiply the atomic mass of each element by the number of atoms of that element in the compound.
  4. Add them together: add the results from step 3 to get the total molar mass of the compound.

Example: calculating molar mass

Let's calculate the molar mass of carbon dioxide (CO2):

  • Carbon (C) has an atomic mass of about 12.01 amu.
  • Oxygen (O) has an atomic mass of about 16.00 amu.
  • CO2 has one carbon atom and two oxygen atoms.
  • The molar mass of carbon dioxide is 12.01 + (2 × 16.00) = 44.01 g/mol.

Lesson on computing molar mass

Weights of atoms and isotopes are from NIST article.

Related: Molecular weights of amino acids

molecular weights calculated today
Please let us know how we can improve this web app.
Menu Balance Molar mass Gas laws Units Chemistry tools Periodic table Chemical forum Symmetry Constants Contribute Contact us
How to cite?