Printed from https://www.webqc.org

Molar Mass, Molecular Weight and Elemental Composition Calculator

Molar mass of CuFeTcReRhPdAgWReOsIrPtAuHgOSPKUHFVRg20BLaAcPaSnSbClBrIYAtAs is 9559.5614 g/mol

Convert between CuFeTcReRhPdAgWReOsIrPtAuHgOSPKUHFVRg20BLaAcPaSnSbClBrIYAtAs weight and moles
CompoundMolesWeight, g
CuFeTcReRhPdAgWReOsIrPtAuHgOSPKUHFVRg20BLaAcPaSnSbClBrIYAtAs

Elemental composition of CuFeTcReRhPdAgWReOsIrPtAuHgOSPKUHFVRg20BLaAcPaSnSbClBrIYAtAs
ElementSymbolAtomic weightAtomsMass percent
CopperCu63.54610.6647
IronFe55.84510.5842
TechnetiumTc96.90636511.0137
RheniumRe186.20723.8957
RhodiumRh102.9055011.0765
PalladiumPd106.4211.1132
SilverAg107.868211.1284
TungstenW183.8411.9231
OsmiumOs190.2311.9899
IridiumIr192.21712.0107
PlatinumPt195.08412.0407
GoldAu196.96656912.0604
MercuryHg200.5912.0983
OxygenO15.999410.1674
SulfurS32.06510.3354
PhosphorusP30.97376210.3240
PotassiumK39.098310.4090
UraniumU238.0289112.4900
HydrogenH1.0079410.0105
FluorineF18.998403210.1987
VanadiumV50.941510.5329
RoentgeniumRg280.16452058.6145
BoronB10.81110.1131
LanthanumLa138.9054711.4531
ActiniumAc227.02775212.3749
ProtactiniumPa231.0358812.4168
TinSn118.71011.2418
AntimonySb121.76011.2737
ChlorineCl35.45310.3709
BromineBr79.90410.8359
IodineI126.9044711.3275
YttriumY88.9058510.9300
AstatineAt209.98714812.1966
ArsenicAs74.9216010.7837

Computing molar mass step by step

First, compute the number of each atom in CuFeTcReRhPdAgWReOsIrPtAuHgOSPKUHFVRg20BLaAcPaSnSbClBrIYAtAs:
Cu: 1, Fe: 1, Tc: 1, Re: 2, Rh: 1, Pd: 1, Ag: 1, W: 1, Os: 1, Ir: 1, Pt: 1, Au: 1, Hg: 1, O: 1, S: 1, P: 1, K: 1, U: 1, H: 1, F: 1, V: 1, Rg: 20, B: 1, La: 1, Ac: 1, Pa: 1, Sn: 1, Sb: 1, Cl: 1, Br: 1, I: 1, Y: 1, At: 1, As: 1

Then, lookup atomic weights for each element in periodic table:
Cu: 63.546, Fe: 55.845, Tc: 96.906365, Re: 186.207, Rh: 102.9055, Pd: 106.42, Ag: 107.8682, W: 183.84, Os: 190.23, Ir: 192.217, Pt: 195.084, Au: 196.966569, Hg: 200.59, O: 15.9994, S: 32.065, P: 30.973762, K: 39.0983, U: 238.02891, H: 1.00794, F: 18.9984032, V: 50.9415, Rg: 280.16447, B: 10.811, La: 138.90547, Ac: 227.0277521, Pa: 231.03588, Sn: 118.71, Sb: 121.76, Cl: 35.453, Br: 79.904, I: 126.90447, Y: 88.90585, At: 209.987148, As: 74.9216

Now, compute the sum of products of number of atoms to the atomic weight:
Molar mass (CuFeTcReRhPdAgWReOsIrPtAuHgOSPKUHFVRg20BLaAcPaSnSbClBrIYAtAs) = ∑ Counti * Weighti =
Count(Cu) * Weight(Cu) + Count(Fe) * Weight(Fe) + Count(Tc) * Weight(Tc) + Count(Re) * Weight(Re) + Count(Rh) * Weight(Rh) + Count(Pd) * Weight(Pd) + Count(Ag) * Weight(Ag) + Count(W) * Weight(W) + Count(Os) * Weight(Os) + Count(Ir) * Weight(Ir) + Count(Pt) * Weight(Pt) + Count(Au) * Weight(Au) + Count(Hg) * Weight(Hg) + Count(O) * Weight(O) + Count(S) * Weight(S) + Count(P) * Weight(P) + Count(K) * Weight(K) + Count(U) * Weight(U) + Count(H) * Weight(H) + Count(F) * Weight(F) + Count(V) * Weight(V) + Count(Rg) * Weight(Rg) + Count(B) * Weight(B) + Count(La) * Weight(La) + Count(Ac) * Weight(Ac) + Count(Pa) * Weight(Pa) + Count(Sn) * Weight(Sn) + Count(Sb) * Weight(Sb) + Count(Cl) * Weight(Cl) + Count(Br) * Weight(Br) + Count(I) * Weight(I) + Count(Y) * Weight(Y) + Count(At) * Weight(At) + Count(As) * Weight(As) =
1 * 63.546 + 1 * 55.845 + 1 * 96.906365 + 2 * 186.207 + 1 * 102.9055 + 1 * 106.42 + 1 * 107.8682 + 1 * 183.84 + 1 * 190.23 + 1 * 192.217 + 1 * 195.084 + 1 * 196.966569 + 1 * 200.59 + 1 * 15.9994 + 1 * 32.065 + 1 * 30.973762 + 1 * 39.0983 + 1 * 238.02891 + 1 * 1.00794 + 1 * 18.9984032 + 1 * 50.9415 + 20 * 280.16447 + 1 * 10.811 + 1 * 138.90547 + 1 * 227.0277521 + 1 * 231.03588 + 1 * 118.71 + 1 * 121.76 + 1 * 35.453 + 1 * 79.904 + 1 * 126.90447 + 1 * 88.90585 + 1 * 209.987148 + 1 * 74.9216 =
9559.5614 g/mol


Mass percent compositionAtomic percent composition

Formula in Hill system is AcAgAsAtAuBBrClCuFFeHHgIIrKLaOOsPPaPdPtRe2Rg20RhSSbSnTcUVWY

Computing molar mass (molar weight)

To calculate molar mass of a chemical compound enter its formula and click 'Compute'. In chemical formula you may use:
  • Any chemical element. Capitalize the first letter in chemical symbol and use lower case for the remaining letters: Ca, Fe, Mg, Mn, S, O, H, C, N, Na, K, Cl, Al.
  • Functional groups: D, T, Ph, Me, Et, Bu, AcAc, For, Tos, Bz, TMS, tBu, Bzl, Bn, Dmg
  • parenthesis () or brackets [].
  • Common compound names.
Examples of molar mass computations: NaCl, Ca(OH)2, K4[Fe(CN)6], CuSO4*5H2O, nitric acid, potassium permanganate, ethanol, fructose, caffeine, water.

Molar mass calculator also displays common compound name, Hill formula, elemental composition, mass percent composition, atomic percent compositions and allows to convert from weight to number of moles and vice versa.

Computing molecular weight (molecular mass)

To calculate molecular weight of a chemical compound enter it's formula, specify its isotope mass number after each element in square brackets.
Examples of molecular weight computations: C[14]O[16]2, S[34]O[16]2.

Definitions

  • Molecular mass (molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
  • Mole is a standard scientific unit for measuring large quantities of very small entities such as atoms and molecules. One mole contains exactly 6.022 ×1023 particles (Avogadro's number)

Steps to calculate molar mass

  1. Identify the compound: write down the chemical formula of the compound. For example, water is H2O, meaning it contains two hydrogen atoms and one oxygen atom.
  2. Find atomic masses: look up the atomic masses of each element present in the compound. The atomic mass is usually found on the periodic table and is given in atomic mass units (amu).
  3. Calculate molar mass of each element: multiply the atomic mass of each element by the number of atoms of that element in the compound.
  4. Add them together: add the results from step 3 to get the total molar mass of the compound.

Example: calculating molar mass

Let's calculate the molar mass of carbon dioxide (CO2):

  • Carbon (C) has an atomic mass of about 12.01 amu.
  • Oxygen (O) has an atomic mass of about 16.00 amu.
  • CO2 has one carbon atom and two oxygen atoms.
  • The molar mass of carbon dioxide is 12.01 + (2 × 16.00) = 44.01 g/mol.

Lesson on computing molar mass

Weights of atoms and isotopes are from NIST article.

Related: Molecular weights of amino acids

molecular weights calculated today
Please let us know how we can improve this web app.
Menu Balance Molar mass Gas laws Units Chemistry tools Periodic table Chemical forum Symmetry Constants Contribute Contact us
How to cite?