Printed from https://www.webqc.org

Molar Mass, Molecular Weight and Elemental Composition Calculator

Molar mass of BCFHIKNOPSUVWYInIrClTlNiAlTiLiSiRfCfPbRbNbSbBiFlTbHfCrSrZr is 3666.9805 g/mol

Convert between BCFHIKNOPSUVWYInIrClTlNiAlTiLiSiRfCfPbRbNbSbBiFlTbHfCrSrZr weight and moles
CompoundMolesWeight, g
BCFHIKNOPSUVWYInIrClTlNiAlTiLiSiRfCfPbRbNbSbBiFlTbHfCrSrZr

Elemental composition of BCFHIKNOPSUVWYInIrClTlNiAlTiLiSiRfCfPbRbNbSbBiFlTbHfCrSrZr
ElementSymbolAtomic weightAtomsMass percent
BoronB10.81110.2948
CarbonC12.010710.3275
FluorineF18.998403210.5181
HydrogenH1.0079410.0275
IodineI126.9044713.4607
PotassiumK39.098311.0662
NitrogenN14.006710.3820
OxygenO15.999410.4363
PhosphorusP30.97376210.8447
SulfurS32.06510.8744
UraniumU238.0289116.4911
VanadiumV50.941511.3892
TungstenW183.8415.0134
YttriumY88.9058512.4245
IndiumIn114.81813.1311
IridiumIr192.21715.2418
ChlorineCl35.45310.9668
ThalliumTl204.383315.5736
NickelNi58.693411.6006
AluminumAl26.981538610.7358
TitaniumTi47.86711.3054
LithiumLi6.94110.1893
SiliconSi28.085510.7659
RutherfordiumRf265.116717.2298
CaliforniumCf249.07485316.7924
LeadPb207.215.6504
RubidiumRb85.467812.3307
NiobiumNb92.9063812.5336
AntimonySb121.76013.3204
BismuthBi208.9804015.6990
FleroviumFl289.187317.8863
TerbiumTb158.9253514.3340
HafniumHf178.4914.8675
ChromiumCr51.996111.4180
StrontiumSr87.6212.3894
ZirconiumZr91.22412.4877

Computing molar mass step by step

First, compute the number of each atom in BCFHIKNOPSUVWYInIrClTlNiAlTiLiSiRfCfPbRbNbSbBiFlTbHfCrSrZr:
B: 1, C: 1, F: 1, H: 1, I: 1, K: 1, N: 1, O: 1, P: 1, S: 1, U: 1, V: 1, W: 1, Y: 1, In: 1, Ir: 1, Cl: 1, Tl: 1, Ni: 1, Al: 1, Ti: 1, Li: 1, Si: 1, Rf: 1, Cf: 1, Pb: 1, Rb: 1, Nb: 1, Sb: 1, Bi: 1, Fl: 1, Tb: 1, Hf: 1, Cr: 1, Sr: 1, Zr: 1

Then, lookup atomic weights for each element in periodic table:
B: 10.811, C: 12.0107, F: 18.9984032, H: 1.00794, I: 126.90447, K: 39.0983, N: 14.0067, O: 15.9994, P: 30.973762, S: 32.065, U: 238.02891, V: 50.9415, W: 183.84, Y: 88.90585, In: 114.818, Ir: 192.217, Cl: 35.453, Tl: 204.3833, Ni: 58.6934, Al: 26.9815386, Ti: 47.867, Li: 6.941, Si: 28.0855, Rf: 265.1167, Cf: 249.0748535, Pb: 207.2, Rb: 85.4678, Nb: 92.90638, Sb: 121.76, Bi: 208.9804, Fl: 289.18728, Tb: 158.92535, Hf: 178.49, Cr: 51.9961, Sr: 87.62, Zr: 91.224

Now, compute the sum of products of number of atoms to the atomic weight:
Molar mass (BCFHIKNOPSUVWYInIrClTlNiAlTiLiSiRfCfPbRbNbSbBiFlTbHfCrSrZr) = ∑ Counti * Weighti =
Count(B) * Weight(B) + Count(C) * Weight(C) + Count(F) * Weight(F) + Count(H) * Weight(H) + Count(I) * Weight(I) + Count(K) * Weight(K) + Count(N) * Weight(N) + Count(O) * Weight(O) + Count(P) * Weight(P) + Count(S) * Weight(S) + Count(U) * Weight(U) + Count(V) * Weight(V) + Count(W) * Weight(W) + Count(Y) * Weight(Y) + Count(In) * Weight(In) + Count(Ir) * Weight(Ir) + Count(Cl) * Weight(Cl) + Count(Tl) * Weight(Tl) + Count(Ni) * Weight(Ni) + Count(Al) * Weight(Al) + Count(Ti) * Weight(Ti) + Count(Li) * Weight(Li) + Count(Si) * Weight(Si) + Count(Rf) * Weight(Rf) + Count(Cf) * Weight(Cf) + Count(Pb) * Weight(Pb) + Count(Rb) * Weight(Rb) + Count(Nb) * Weight(Nb) + Count(Sb) * Weight(Sb) + Count(Bi) * Weight(Bi) + Count(Fl) * Weight(Fl) + Count(Tb) * Weight(Tb) + Count(Hf) * Weight(Hf) + Count(Cr) * Weight(Cr) + Count(Sr) * Weight(Sr) + Count(Zr) * Weight(Zr) =
1 * 10.811 + 1 * 12.0107 + 1 * 18.9984032 + 1 * 1.00794 + 1 * 126.90447 + 1 * 39.0983 + 1 * 14.0067 + 1 * 15.9994 + 1 * 30.973762 + 1 * 32.065 + 1 * 238.02891 + 1 * 50.9415 + 1 * 183.84 + 1 * 88.90585 + 1 * 114.818 + 1 * 192.217 + 1 * 35.453 + 1 * 204.3833 + 1 * 58.6934 + 1 * 26.9815386 + 1 * 47.867 + 1 * 6.941 + 1 * 28.0855 + 1 * 265.1167 + 1 * 249.0748535 + 1 * 207.2 + 1 * 85.4678 + 1 * 92.90638 + 1 * 121.76 + 1 * 208.9804 + 1 * 289.18728 + 1 * 158.92535 + 1 * 178.49 + 1 * 51.9961 + 1 * 87.62 + 1 * 91.224 =
3666.9805 g/mol


Mass percent compositionAtomic percent composition

Formula in Hill system is CHAlBBiCfClCrFFlHfIInIrKLiNNbNiOPPbRbRfSSbSiSrTbTiTlUVWYZr

Computing molar mass (molar weight)

To calculate molar mass of a chemical compound enter its formula and click 'Compute'. In chemical formula you may use:
  • Any chemical element. Capitalize the first letter in chemical symbol and use lower case for the remaining letters: Ca, Fe, Mg, Mn, S, O, H, C, N, Na, K, Cl, Al.
  • Functional groups: D, T, Ph, Me, Et, Bu, AcAc, For, Tos, Bz, TMS, tBu, Bzl, Bn, Dmg
  • parenthesis () or brackets [].
  • Common compound names.
Examples of molar mass computations: NaCl, Ca(OH)2, K4[Fe(CN)6], CuSO4*5H2O, nitric acid, potassium permanganate, ethanol, fructose, caffeine, water.

Molar mass calculator also displays common compound name, Hill formula, elemental composition, mass percent composition, atomic percent compositions and allows to convert from weight to number of moles and vice versa.

Computing molecular weight (molecular mass)

To calculate molecular weight of a chemical compound enter it's formula, specify its isotope mass number after each element in square brackets.
Examples of molecular weight computations: C[14]O[16]2, S[34]O[16]2.

Definitions

  • Molecular mass (molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
  • Mole is a standard scientific unit for measuring large quantities of very small entities such as atoms and molecules. One mole contains exactly 6.022 ×1023 particles (Avogadro's number)

Steps to calculate molar mass

  1. Identify the compound: write down the chemical formula of the compound. For example, water is H2O, meaning it contains two hydrogen atoms and one oxygen atom.
  2. Find atomic masses: look up the atomic masses of each element present in the compound. The atomic mass is usually found on the periodic table and is given in atomic mass units (amu).
  3. Calculate molar mass of each element: multiply the atomic mass of each element by the number of atoms of that element in the compound.
  4. Add them together: add the results from step 3 to get the total molar mass of the compound.

Example: calculating molar mass

Let's calculate the molar mass of carbon dioxide (CO2):

  • Carbon (C) has an atomic mass of about 12.01 amu.
  • Oxygen (O) has an atomic mass of about 16.00 amu.
  • CO2 has one carbon atom and two oxygen atoms.
  • The molar mass of carbon dioxide is 12.01 + (2 × 16.00) = 44.01 g/mol.

Lesson on computing molar mass

Weights of atoms and isotopes are from NIST article.

Related: Molecular weights of amino acids

molecular weights calculated today
Please let us know how we can improve this web app.
Menu Balance Molar mass Gas laws Units Chemistry tools Periodic table Chemical forum Symmetry Constants Contribute Contact us
How to cite?